Infrared Spectroscopic and Gravimetric Studies on the Dicyclohexylaminemetal(II) Tetracyanonickellate(II) Host-aromatic Guest Systems

ZİYA KANTARCI* and M. MAHİR BÜLBÜL
Gazi Üniversitesi, Fen-Edebiyat Fakültesi, FizikBölümü, Teknikokullar, TR06500, Ankara, Turkey

(Received: 15 August 2000; in final form: 19 January 2001)

Key words: benzene derivatives, clathrates, cylohexylamine, inclusion compounds, infrared spectra, metal complexes, tetracyanonickellate

Abstract

$\mathrm{Co}(\text { Cyclohexylamine })_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ and $\mathrm{Cd}(\text { Cyclohexylamine })_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ host compounds have been prepared in powder form. The spectral data suggest that these complexes are similar in structure to the Hofmann-dma-type hosts. The sorption processes of the aromatic guests (benzene, toluene, $o-, m$-, p-xylene, naphthalene, 1,2-, 1,3-dichlorobenzene and 1,4dibromobenzene) in these hosts have been examined at room temperature by gravimetric and spectroscopic measurements. The desorption of the benzene guest against time has been measured. The host structures change on inclusion of the guests and recover after liberation. The host complexes have been suggested as sorbents for isomeric separations.

Introduction

The inclusion of benzene molecules as a guest into a host framework has been used for the purification of benzene [1]. A patent has been obtained for the recovery of purified benzene from hydrocarbon stocks using Hofmann's clathrate, $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot 2$ Benzene, as the collector [2]. Based on the structure of this prototype clathrate several analogous compounds called Hofmann-type clathrates have been derived by appropriate replacements of the host moities and the guest molecules [3]. These clathrates are designated with a general formula $\mathrm{M}(\mathrm{II}) \mathrm{L}_{2} \mathrm{M}^{\prime}(\mathrm{II})(\mathrm{CN})_{4} \cdot \mathrm{nG}$, where, M is Mn , $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$ or $\mathrm{Cd} ; \mathrm{M}^{\prime}$ is Ni, Pd or $\mathrm{Pt} ; \mathrm{L}$ is a unidentate ligand molecule and n is the number of G (guest) molecules depending on the bulkiness of the ligands. The host framework consists of two dimensional polymeric layers composed of ML_{2} cations and $\mathrm{M}^{\prime}(\mathrm{CN})_{4}$ anions. The M^{\prime} atoms are coordinated to four C atoms of the CN groups in a square-planar environment. M atoms are octahedrally surrounded by 6 N atoms, four from the CN groups and the other two are from two ligand molecules. The ligand molecules lie above and below the layers. The layers and the ligands as blocking units provide empty spaces of varying shapes and dimensions, in which guest molecules may be imprisoned [3].

The host structure described above is not unique for the given chemical formula. A number of studies have suggested that similar compositions never support similar structures for the cyanometallate inclusion and complex systems [3, 4]. Among them, dimethylamine (dma) gives a number
of inclusion compounds with a selectivity very different from the Hofmann-type hosts mentioned above [3]. The host $\mathrm{Cd}(\mathrm{dma})_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ can include beside benzene, toluene, xylenes, naphthalene, chlorobenzene, bromobenzene, dichlorobenzene, and $o-, p$ - and m-toluidine, which have never been found enclathrated into Hofmann-type and analogous hosts. Some of these inclusion compounds show x-ray diffraction patterns characteristic of the intercalate structures of these guests between the layered metal complex sheets. The expanded spacing (in the range of $9.2-9.5 \AA$ for toluene, chlorobenzene, bromobenzene, p-xylene and naphthalene) has been interpreted in terms of the guest molecules arranged between sheets covered with hydrophobic methyl groups which may form a tunnel-like cavity between the sheets.

These unusual results prompted us to explore the inclusion behaviours of the Hofmann-type and Hofmann- T_{d}-type hosts with a series of cycloalkylamines and a variety of guests different in size and shape from those enclathated in the Hofmann-type and Hofmann- T_{d}-type hosts.

Now, for the first time, we have prepared two new Hofmann-dma-type host complexes, M (cyclohexylamine) $)_{2} \mathrm{Ni}(\mathrm{CN})_{4}$, ($\mathrm{M}=\mathrm{Co}$ or Cd) (abbr. M-CHA-Ni,) in powder form. In this study, gravimetric and infrared spectroscopic measurements of the sorption processes of the aromatic guests (benzene, toluene, oxylene, m-xylene, p-xylene, 1,2-,1,3-,1,4-dichlorobenzene and naphthalene) in the vapour phase have been examined at room temperature. The loss of benzene from the host compounds against time has been measured.

[^0]
Experimental

All chemicals used were reagent grade and used without further purification.

Co-CHA-Ni (or Cd-CHA-Ni): this host complex was prepared by adding 9 millimoles of CHA in solution in ethanol (ca. 20 mL) into 3 millimoles of the Hofmann$\mathrm{H}_{2} \mathrm{O}$-type hydrate $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4}\left(4 \mathrm{H}_{2} \mathrm{O}(0.9896 \mathrm{~g})\right.$ (or $\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4}\left(4 \mathrm{H}_{2} \mathrm{O}(1.1498 \mathrm{~g})\right)$ which was prepared by the procedure of Mathey and Mazieres [5]. The precipitate was filtered, washed with ethanol and ether, successively, and dried in air to constant weight. The complexes $\mathrm{Co}(\mathrm{CHA})_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ and $\mathrm{Cd}(\mathrm{CHA})_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ were obtained in quantitative yield. The freshly prepared complexes were analysed for $\mathrm{Co}, \mathrm{Cd}, \mathrm{Ni}, \mathrm{C}, \mathrm{H}$ and N with the following results (found \%/calculated \%): $\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4}$: Ni $=14.21 / 13.91, \mathrm{Co}=14.29 / 14.03, \mathrm{C}=47.22 / 45.75, \mathrm{H}=$ 6.23/6.24, $\mathrm{N}=20.27 / 20.01$.
$\mathrm{Cd}\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4}: \quad \mathrm{Ni}=12.57 / 12.39, \quad \mathrm{Cd}=$ $23.81 / 23.74, \quad \mathrm{C}=42.75 / 40.59, \quad \mathrm{H}=5.79 / 5.53, \quad \mathrm{~N}=$ 18.00/17.75.

The clathrate compounds were prepared by leaving the host complexes in the saturated guest vapour as described below.

Infrared spectra of the compounds were recorded in the range $4000-400 \mathrm{~cm}^{-1}$ on a Mattson 1000 FT-IR spectrometer which was calibrated using an indene/camphor/cyclohexane standard solution. The samples were prepared as mulls in Nujol and poly (chlorotrifloroethylene) between CsI plates

Results and discussion

Before embarking upon the inclusion and liberation of the guest species in the host complexes, it is appropriate to elucidate the host structure on the basis of the available spectral data.

The infrared spectra of the host compounds are shown in Figure 1. The assignment and the wavenumbers of the fundamental vibrations arising from the $\mathrm{Ni}(\mathrm{CN})_{4}$ and the CHA moities are given in Tables 1 and 2, respectively. It will be convenient to divide the vibrations into two, arising from the $\mathrm{Ni}(\mathrm{CN})_{4}$ unit and from the CHA ligand. The assignment of the spectral bands due to the $\mathrm{Ni}(\mathrm{CN})_{4}$ moities are straightforward, since these bands are persistent and picked out with ease [6-10].

$\mathrm{Ni}(\mathrm{CN})_{4}$ group vibrations

The fact that in the host framework of the Hofmann-type clathrates [3-5, 7, 8] and Hofmann-type host complexes [6, 9,10], the metal atom in $\mathrm{Ni}(\mathrm{CN})_{4}$ is square planar and surrounded by the carbon ends of the CN ions suggests that the host framework of the complexes studied also have square planar $\mathrm{Ni}(\mathrm{CN})_{4}$ units. In order to assign the bands attributable to the $\mathrm{Ni}(\mathrm{CN})_{4}$ ion in the spectra, we refer to the work of McCullough et al. who presented vibrational data for the salt $\mathrm{Na}_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ in the solid state [11]. In this salt the $\mathrm{Ni}(\mathrm{CN})_{4}$

Figure 1. Spectra of Co-CHA-Ni (a) and Cd-CHA-Ni (b) host complexes in nujol and *poly(chlortrifluoroethylene) - oil,
anion is not coordinated to Na^{+}ion; therefore, it can be treated as an isolated unit with $\mathrm{D}_{4 \mathrm{~h}}$ symmetry and thus used as a reference to comment on vibrational changes when CoNC (or $\mathrm{Cd}-\mathrm{NC}$) bonding takes place. The spectral data for $\mathrm{Ni}(\mathrm{CN})_{4}$ groups in the host compounds are given in Table 1 , together with spectral data of $\mathrm{Na}_{2} \mathrm{Ni}(\mathrm{CN})_{4}$. The assigned wavenumber of the $\mathrm{Ni}(\mathrm{CN})_{4}$ units of the complexes studied appear to be much higher than those for the isolated $\mathrm{Ni}(\mathrm{CN})_{4}$ ion (Table 1). Such frequency shifts have been observed for Hofmann-type host frameworks [6-10], and are attributed to the mechanical coupling of the internal modes of $\mathrm{Ni}(\mathrm{CN})_{4}$ with the $\mathrm{M}-\mathrm{NC}$ vibrations. It follows that the N -termini of the $\mathrm{Ni}(\mathrm{CN})_{4}$ group are bound to a Co (or Cd) atom in the host compounds.

Cyclohexylamine vibrations

Up to the time of writing, there have been no reports of the vibrational spectra of the CHA molecule. Owing to the low symmetry of the CHA ligand molecule, the assignments of the CHA vibrational bands of the CHA ligand in the spectra were made in terms of the characteristic group frequencies. The tentative assignments of the fundamental bands of CHA observed in the spectra of the compounds under study are
Table 1. The wavenumbers of the $\mathrm{Ni}(\mathrm{CN})_{4}$ unit of the $\mathrm{M}(\mathrm{CHA})_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ complexes

Assignment	$\mathrm{Na}_{2} \mathrm{Ni}(\mathrm{CN})_{4}$	Co-CHA-Ni	Cd-CHA-Ni	$\begin{aligned} & \mathrm{Co}-\mathrm{CHA}-\mathrm{NiG} \\ & \mathrm{G}=\text { Benzene } \end{aligned}$	$\begin{aligned} & \text { Cd-CHA-Ni-2G } \\ & \text { G }=\text { Benzene } \end{aligned}$	$\begin{aligned} & \text { Co-CHA-Ni-2G } \\ & \text { G = Toluene } \end{aligned}$	$\begin{aligned} & \text { Cd-CHA-Ni-2G } \\ & \text { G }=\text { Toluene } \end{aligned}$	$\begin{aligned} & \mathrm{Co}-\mathrm{CHA}-\mathrm{Ni}-2 \mathrm{G} \\ & \mathrm{G}=o \text {-Xylene } \end{aligned}$	$\begin{aligned} & \text { Cd-CHA-Ni-2G } \\ & \mathrm{G}=o \text {-Xylene } \end{aligned}$
$\nu_{8}, \nu(\mathrm{CN}), \mathrm{E}_{\mathrm{u}}$	2128 vs, 2132 vs	2153 vs	2147 vs	2163 vs	2160	2162 vs	2151 vs	2160 s, 2154 s	2150 vs
Hot band	-	2126 w	2128 w	-	-	2121 vw	no	2121 vw	2122 vw
$v\left(\mathrm{C}_{13} \mathrm{~N}\right)$	2087 w	2112 w	2108 w	2123 w	2122	no	2112 vw	2111 vw	2110 vw
$\nu_{9}, \nu(\mathrm{NiC}), \mathrm{E}_{\mathrm{u}}$	543 w	-	-	-	-	no	no	no	no
$\nu_{12}, \pi(\mathrm{NiCN}), \mathrm{A}_{2 \mathrm{u}}$	488 w	454 w	449 w	446 w	445	no	no	no	446 w, sh
$\nu_{10}, \delta(\mathrm{NiCN}), \mathrm{E}_{\mathrm{u}}$	427 vs	432 vs	425 vs	437 vs	425 vs	436 vs	423 vs	435 vs	424 vs
Assignment ${ }^{\text {a }}$	$\mathrm{Na}_{2} \mathrm{Ni}(\mathrm{CN}) 4^{\text {a }}$	$\begin{aligned} & \text { Co-CHA-Ni-2G } \\ & \mathrm{G}=m \text {-Xylene } \end{aligned}$	$\begin{aligned} & \text { Cd-CHA-Ni-2G } \\ & \mathrm{G}=m \text {-Xylene } \end{aligned}$	$\begin{aligned} & \mathrm{Co} \text {-CHA-Ni-2G } \\ & \mathrm{G}=p \text {-Xylene } \end{aligned}$	Cd-CHA-Ni-2G $\mathrm{G}=p \text {-Xylene }$	Cd-CHA-Ni-2G $\mathrm{G}=1,2$-dichlorobenzene	Cd-CHA-Ni-2G $\mathrm{G}=$ 1,3-dichlorobenzene	Cd-CHA-Ni-2G $\mathrm{G}=$ Naphthalene	
$\nu_{8}, \nu(\mathrm{CN}), \mathrm{E}_{\mathrm{u}}$	2128 vs, 2132 vs	$2161 \mathrm{~s}, 2152 \mathrm{~s}$	2161 s, 2153 m , sh	2163 s, 2153 m, sh	2156 s, 2147 m , sh	$2152 \mathrm{~s}, 2147 \mathrm{~m}$, sh	2149 s, 2144 m, sh	$2152 \mathrm{~s}, 2145 \mathrm{~m}$, sh	
Hot band	-	2124 vw	2122 vw	2124 vw	no	no	no	no	
$\nu\left(\mathrm{C}_{13} \mathrm{~N}\right)$	2087 w	2113 vw	2108 w	2111 vw	2112 vw	2110 vw	2110 vw	2112 vw	
$z \nu_{9}, \nu(\mathrm{NiC}), \mathrm{E}_{\mathrm{u}}$	543 w	no	no	no	no	no	no	no	
$\nu_{12}, \pi(\mathrm{NiCN}), \mathrm{A}_{2 \mathrm{u}}$	488 w	447 w , sh	437 w , sh	447 w , sh	438 w, sh	440 w , sh	448 w , sh	no	
$\nu_{10}, \delta(\mathrm{NiCN}), \mathrm{E}_{\mathrm{u}}$	427 vs	425 vs	422 vs	424 vs	424 vs	423 vs	422 vs	423 vs	

${ }^{\mathrm{a}}$ Taken from Ref. [11]. Abbr.: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{sh}=$ shoulder, $\mathrm{no}=$ not observed.
Table 2a. Assignment and the IR wavenumbers for the CHA in M-CHA-Ni complexes and their clathrates*

Assignment	CHA (liquid)	CHA in nujol and PCl-F-ethylene	Co-CHA-Ni	Cd-CHA-Ni	$\begin{aligned} & \text { Co-CHA-Ni-2G } \\ & \text { G = Benzene } \end{aligned}$	$\begin{aligned} & \text { Cd-CHA-Ni-2G } \\ & \text { G = Benzene } \end{aligned}$	$\begin{aligned} & \text { Co-CHA-Ni-2G } \\ & \text { G = Toluene } \end{aligned}$	$\begin{aligned} & \text { Cd-CHA-Ni-2G } \\ & \mathrm{G}=\text { Toluene } \end{aligned}$
NH_{2} antisym.str	3353 m	3383 s	3350 s	3355 s	3329 s	3332 s	3341 s	3333 s
NH2 sym. str	3280 m	3320 m	3288 m	3292 m	3276 m	3277 m	3281 m	3275 m
CH_{2} antisym. str	-	-	2984 w	2971 w	2980 w	2972 w	2975 w	2972 w
CH_{2} antisym. str	-	-	2961 m, sh	2948 m, sh	2962 vw	2948 w, sh	no	2949 m, sh
CH_{2} antisym. str	-	-	2939 w, sh	2939 w, sh	2937 w, sh	2937 w, sh	no	2935 m , sh
CH_{2} sym. str	2926 vs	2934 vs	2926 ms	2920 ms	2923 vs	2919 vs	2927 ms	2920 ms
CH_{2} sym. str	2897 m, sh	2912 m , sh	2909 m, sh	2905 m , sh	2906 m, sh	2905 m , sh	2906 m, sh	2906 m, sh
CH_{2} sym. str	-	-	2887 w, sh	2888 w, sh	2889 w, sh	2888 w, sh	no	no
CH str	2853 ms	2858 ms	2858 ms	2850 ms	2852 vs	2851 vs	2852 ms	2851 ms
NH_{2} scissoring	1598 ms	1616 ms	1575 ms	1580 ms	1582 ms	1584 ms	1578 ms	1578 ms
	1568 w, sh	1574 w	1560 w, sh	1559 m, sh	1559 vw	no	1560 w	1560 w
CH_{2} deform.	-	1466 w	1469 vw	1465 vw	1466 w	1464 w	1465 vw, sh	1465 vw, sh
CH_{2} deform	1449 ms	1453 ms	1452 ms	1452 ms	1451 vs	1451 vs	1450 ms	1452 ms
CH_{2} deform	-	-	1438 w, sh	1442 w, sh	1444 w, sh	1443 w, sh	1437 w, sh	1439 w, sh
CH bending	$\begin{aligned} & 1377 \mathrm{~m} \\ & 1347 \mathrm{w} \end{aligned}$	1377 m	1378 w, sh	1387 w, sh	1389 w, sh	1389 w, sh	1389 w, sh	1388 w, sh
NH_{2} waging	1312 w, sh	1309 w	1311 vw	1312 vw	1312 w	1310 w	1313 w	1313 w
NH_{2} waging	1281 vw, sh	-	1303 vw, sh	1305 vw	1303 vw, sh	1304 vw, sh	1305 w	1305 w
CH_{2} waging	1281 w	-	1275 vw	1277 vw	1274 vw	1275 vw	1278 w	1277 w
CH_{2} waging	1259 w	1259 w	1257 vw , sh	1257 vw, sh	1256 w	1256 w	1257 w	1257 w
CH_{2} waging	1205 w	1203 w	1217 m	1213 m	1218 m	1215 m	1217 m	1214 m
Ring-deform.	1173 w	1170 w	1169 m	1169 m	1172 m	1170 m	1180 w	1169 m
Ring deform.	1152 w	1148 w	1155 w, sh	1156 w, sh	1157 w, sh	1155 w, sh	1159 vw	1157 vw
CH_{2} twisting	1102 m	1105 m	1117 m	1114 m	1121 m	1117 m	1120 m	1116 m
CH_{2} twisting	1092 m	1090 m	1097 vw	1093 w	1090 vw	1097 w	1089 w	1093 w
CH_{2} twisting	-	1061 vw	1063 vw	1062 vw	1064 w, sh	1063 w, sh	1069 w	1067 w
$\mathrm{C}-\mathrm{N}$ str	1038 w	1036 m	1035 s	1036 s	1036 s	1039 s	1043 m	1040 m
C-N str	-	-	1014 vs	1000 vs	1027 m, sh	1016 vs	1021 ms	1030 ms
Ring breathing	978 m	975 w	968 s	968 s	968 s	965 s	968 m	967 s
Ring breathing	-	-	940 vw	938 vw	no	no	940 vw	941 vw
NH_{2} twisting	932 m	926 m	918 m	917 m	918 w	918 w	920 m	920 m
Ring deformation	898	893 s	892 s	889 s	891 s	889 s	892μ	890 m
$\mathrm{C}-\mathrm{H}$ bending	862 m	860 w, sh	876 m	875 m	879 w	878 w	877 w	879 w
CH_{2} rocking	840	843	840 w	840 w	843 w	842 w	845 w	843 w
CH_{2} rocking	778 m	775 s	785 w	783 w	786 w	784 w	787 w	790 w
Ring deformation	-	-	-	-	772 vw	769 vw	771 vw	770 vw
CH_{2} rocking	600 vw	-	595 w	592 vw	589 vw, sh	593 vw , sh	no	no
CH_{2} rocking	-	-	576 s	567 m	574 s	565 s	577 s	570 s
CH_{2} rocking	556 w	554 m	552 m	532 s	547 s	531 s	553 m	533 s
Ring $\mathrm{C}-\mathrm{N}$ bending	464 w	466 w	491 w	480 w	490 vw	481 w	490 w	482 vw
	-	452 w	454 w, sh	449 w , sh	448 w , sh	445 w , sh	no	446 w , sh

[^1]Table 2b. Assignment and the IR wavenumbers for the CHA in the clathrates

Assignment	$\begin{aligned} & \text { Co-CHA-Ni- } 1.5 \mathrm{G} \\ & \mathrm{G}=o \text {-Xylene } \end{aligned}$	$\begin{aligned} & \mathrm{Cd}-\mathrm{CHA}-\mathrm{Ni}-2 \mathrm{G} \\ & \mathrm{G}=o \text {-Xylene } \end{aligned}$	$\begin{aligned} & \text { Co-CHA-Ni-2G } \\ & \mathrm{G}=m \text {-Xylene } \end{aligned}$	$\begin{aligned} & \text { Cd-CHA-Ni-2G } \\ & \mathrm{G}=m \text {-Xylene } \end{aligned}$	$\begin{aligned} & \text { Co-CHA-Ni- } 1.5 \mathrm{G} \\ & \mathrm{G}=p \text {-Xylene } \end{aligned}$	$\begin{aligned} & \mathrm{Cd} \text {-CHA-Ni-G } \\ & \mathrm{G}=p \text {-Xylene } \end{aligned}$	Cd-CHA-Ni-2G $\mathrm{G}=1,2$-dichlorobenzene	Cd-CHA-Ni-2G $\mathrm{G}=$ 1,3-dichlorobenzene	$\begin{aligned} & \text { Cd-CHA-Ni-2G } \\ & \text { G = Naphthalene } \end{aligned}$
NH_{2} antisym.str. $3350 \mathrm{~m}, 3336 \mathrm{~m}$	$3350 \mathrm{~m}, 3338 \mathrm{~m}$	$3350 \mathrm{~m}, 3339 \mathrm{~m}$	3356 s, 3339 m	$3350 \mathrm{~m}, 3342 \mathrm{~m}$	$3349 \mathrm{~m}, 3334 \mathrm{~m}$	3338 s	$3355 \mathrm{~m}, 3335 \mathrm{~m}$	3332 s	
NH_{2} sym. str.	3288 m, 3276 m	3288 m, 3279 m	3287 m, 3279 m	$3292 \mathrm{~m}, 3279 \mathrm{~m}$	3288 m, 3280 m	3288 m, 3276 m	3280 m	$3280 \mathrm{~m}, 3276 \mathrm{~m}$	3273 m
CH_{2} antisym. str.	2971 w	2974 w	no	2972 w	2983 w	2971 w	no	2971 w	2968 w
CH_{2} antisym. str.	2947 m, sh	no.	2940 m, sh	2947 m, sh	2960 m	no	2959 w, sh	2958 w, sh	no
CH_{2} antisym. str.	2932 m,sh	2934 m,sh	no	2938 w, sh	2937 w, sh	2939 w, sh	2932 w, sh	2933 m, sh	no
CH_{2} sym. str.	2920 vs	2926 vs	2923 vs	2919 vs	2926 vs	2921 vs	2933 vs	2923 vs	2923 ms
CH_{2} sym. str.	2904 m, sh	2904 m, sh	2903 m , sh	2903 m , sh	2909 m , sh	2901 m, sh	2910 m, sh	2907 m, sh	2905 m, sh
CH_{2} sym. str.	2889 w, sh	2892 w, sh	no	no	no	no	no	no	no
CH str.	2850 vs	2853 vs	2854 vs	2850 vs	2855 vs	2851 vs	2851 vs	2852 vs	2850 vs
NH_{2} scissoring	1580 s	1578 s	1578 s	1579 s	1576 s	1578 s	1577 s	1578 vs	1577
	1559 w, sh	1560 w, sh	1560 w, sh	1560 w, sh	1559 w, sh	1559 w, sh	1559 w, sh	1561 w, sh	1559
CH_{2} deform.	1466 w, sh	1467 w, sh	1465 w, sh	1466 w, sh	1464 w, sh	1465 w, sh	1463 w, sh	no	1464 vw
CH_{2} deform.	1451 vs	1451 vs	1451 vs	1452 vs	1451 vs	1450 vs	1456 vs	1449 s, sh	1449 ms
CH_{2} deform.	no	1443 w, sh	1438 w, sh	1440 w, sh	1438 w, sh	no	no	1415 vw	1437 w, sh
CH bending	1386 w	1387 w	1389 w	1387 w	1388 w	1384 w	1386 w	1384 w, sh	1390 w, sh
NH_{2} waging	1310 w	1310 w	1311 w	1310 w	1312 w	1310 w	1311 w	1311 w	1312
NH_{2} waging	1305 w	1304 vw	1304 vw	1303 w	1302 w	1307 w	1301 w	1300 vw, sh	1301 vw, sh
CH_{2} waging	1277 vw	1276 vw	1276 vw	1273 vw	1276 w	1275 w	1274 w	no	no
CH_{2} waging	1256 w	1256 vw	1257 vw	1252 w	1257 w	1259 w	1253 w	1255 w	1256 w
Ring-deform.	1170 m	1169 m	1169 m	1169 m	1170 m	1172 m	1171 m	1169 w	1177 w
Ring deform.	1156 w	1157 w	1157 w	1158 w	1160 w	1154 w	1158 w	1162 w, sh	no
CH_{2} twisting	1119 m	1117 m	1118 m	1113m	1118 m	1116 m	1115 w, sh	1111 m	1114 m
CH_{2} waging	1216 m	1215 w	1215 m	1213 w	1217 m	1212 m	1213 m	1213 m	1213 m
CH_{2} twisting	1099 w	1094w	1094 w	1093 w	1099 w	1090 w	1095 vw	1092 vw	1097 vw
CH_{2} twisting	1068 w	1065 w	1067 w	1063 w	1065 w	no	1067 vw	no	1067 w
$\mathrm{C}-\mathrm{N}$ str	1043 m	1039 m	1042 m	1037 m	1035 m	1037 m	1036 m	1038 m	1040 s
C-N str	1017 vs	1000 vs	1014 vs	999 vs	1014 vs	1005 vs	1014 vs	1017 s, sh	1016 vs
Ring breathing	970 m	967 m	969 m	969 m	968 m	967 m	967 m	967 m	966 s
Ring breathing	942 vw	942 vw	935 vw	no	934 w	935 w	939 w	938 w	no
NH_{2} twisting	920 m	920 m	921 m	918 m	919 m	916 m	920 m	919 m	918 w
Ring deformation	892 m	892 m	892 m	891 m	890 m	891 m	891 m	890 m	892 s
$\mathrm{C}-\mathrm{H}$ bending	880 w	877 w	877 m	875 w	877 w	875 w	879 w	no	880 w
CH_{2} rocking	845 w	843 w	844 w	840 w	844 w	847 w	845 w	844 vw	845 vw
CH_{2} rocking	786 w	784 w	784 m	783 w	no	787 w, sh	787 w	no	no
Ring deformation	no	no	no	no	no	771 vw	no	no	769 vw
CH_{2} rocking	no	no	no	no	no	no	no	no	no
CH_{2} rocking	570 s	576 s	569 m	568 m	571 m	574 m	570 m	570 m	570 m
CH_{2} rocking	533 s	549 s	532 s	538 m	533 s	539 m	540 m	529 s	533 s
Ring $\mathrm{C}-\mathrm{N}$ bending	482 vw	489 vw	480 w	no	no	no	no	479 vw	482 vw
	446 w, sh	455 w, sh	no	447 w, sh	448 w, sh	no	450 w, sh	448 v , sh	445 w, sh

Abbr.: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=\mathrm{weak}, \mathrm{no}=$ not observed.

Table 3. n, the number of the guest molecules, included in the M-CHA-Ni hosts, and the duration of the inclusion (the time required to attain constant weight)

Host	Guest	n	Duration (approx.)
Co-CHA-Ni	Benzene	6.33	24 hours
Cd-CHA-Ni		3.20	70 minutes
Co-CHA-Ni	Toluene	3.05	10 days
Cd-CHA-Ni		2.19	11 days
Co-CHA-Ni	o-Xylene	1.48	8 days
Cd-CHA-Ni		1.98	8 days
Co-CHA-Ni	m-Xylene	2.02	15 days
Cd-CHA-Ni		1.99	45 days
Co-CHA-Ni	$p-X y l e n e ~$	1.47	15 days
Cd-CHA-Ni		1.01	20 days
Co-CHA-Ni	1,2-Dichlorobenzene	0.00	30 days
Cd-CHA-Ni		2.00	3 days
Co-CHA-Ni	1,3-Dichlorobenzene	0.00	16 days
Cd-CHA-Ni		2.00	16 days
Co-CHA-Ni	1,4-Dichlorobenzene	0.09	30 days
Cd-CHA-Ni		0.00	30 days
Co-CHA-Ni	1,4-Dibromobenzene	0.04	30 days
Cd-CHA-Ni		0.00	30 days
Co-CHA-Ni	Naphthalene	0.01	8 months
Cd-CHA-Ni		1.98	8 months

Figure 2. Decay of n (number of benzene molecules) against time for the Co-CHA-Ni-Benzene system.
partly based on the assignments of the infrared spectra of cyclobutylamine in the liquid and vapour states [12]. In order to assign the bands attributable to the CHA ligand molecules in the complex and clathrate compounds, we refer to the spectral data for the isolated (non-interacting) CHA molecule as a dilute solution $(0.2 \mathrm{M})$ in an inert solvent (nujol or poly(chlorotrifluoroethylene). The wavenumbers arising from the CHA moities are given in Table 2a, along with the spectral data for liquid CHA and the solution of CHA in nujol and poly(chlorotrifluoroethylene) for comparison.

The $\mathrm{N}-\mathrm{H}$ stretching frequencies of the CHA molecules in the complex compounds are found to be ca. $30 \mathrm{~cm}^{-1}$ lower than those in solution (Table 2a). These downward frequency shifts may be explained as weakening of the N H bonds resulting from the electrons draining from the N atom on account of its coordination to the metal atom M

Table 4. The vibrational wavenumbers of benzene in the M-CHA-Ni-2Bz clathrates*

Assignment ${ }^{\text {a }}$	Liquid benzene ${ }^{\text {a }}$	Cd-NH3-Ni-2Bz ${ }^{\text {b }}$	Co-CHA-Ni-Bz	Cd-CHA-Ni-Bz
$v_{8}+v_{19}$	3075	3082 w	3063 w	3069 w
$\nu_{20} \mathrm{E}_{1 \mathrm{u}}$	3073	-	3088 m	3088 m
$v_{13} \mathrm{~B}_{1 \mathrm{u}}$	3062	3063 w	3033 m	3033 m
$\nu_{2} \mathrm{~A}_{1 \mathrm{~g}}$	3059	-	no	no
$\nu_{7} \mathrm{E}_{2 \mathrm{~g}}$	3046	-	no	no
$\nu_{5}+\nu_{5} \mathrm{E}_{14}$	1955	1986 m	1970 w	2967 w
$\nu_{10}+\nu_{17}$	1596	-	no	no
$\nu_{8} \mathrm{E}_{2 \mathrm{~g}}$	1815	1848 m	1824 w	1824 w
$\nu_{19} \mathrm{E}_{1 \mathrm{u}}$	1479	1474 s	1477 s	1476 s
$v_{14} \mathrm{E}_{2 \mathrm{u}}$	1309	1313 vw	1303 vw	1305 vw
$\nu_{9} \mathrm{E}_{2 \mathrm{~g}}$	1178	-	no	no
$v_{15} \mathrm{~B}_{2 \mathrm{u}}$	1149	114 s	no	no
$v_{18} \mathrm{E}_{2 \mathrm{u}}$	1036	1032 vs	1035 m	1035 vw
$v_{1} \mathrm{~A}_{1 \mathrm{~g}}$	992	-	no	no
$\nu_{5} \mathrm{~B}_{2 \mathrm{~g}}$	989	-	no	no
$\nu_{17} \mathrm{E}_{2 \mathrm{u}}$	996	984 m	968 s	966 s
$v_{10} \mathrm{E}_{1 \mathrm{u}}$	849	-	no	no
$v_{11} \mathrm{~A}_{2 \mathrm{u}}$	670	700 vs	688 s/684/678	687 s
$v_{6} \mathrm{E}_{2 \mathrm{~g}}$	606	-	no	no

${ }^{\mathrm{a}}$ Taken from Ref. [17].
${ }^{\mathrm{b}}$ Only IR wavenumbers are listed without regarding assignment [8].
${ }^{*} \mathrm{Cd}-\mathrm{NH}_{3}-\mathrm{Ni}-2 \mathrm{Bz}=\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{2} . \mathrm{Ni}(\mathrm{CN})_{4}(2 \mathrm{Bz}, \mathrm{v}=$ very, $\mathrm{s}=$ strong, m
$=$ medium, $\mathrm{w}=$ weak, no $=$ not observed.
(Co or Cd). A metal dependent downward frequency shift is also observed for the NH_{2} scissoring mode (Table 2). Similar shifts have been observed in metal-coordinated aniline compounds [13-15].

Gravimetric results and spectral changes upon enclathration

When the host complexes are subjected to the guest vapour in equilibrium with their liquid phases in a desiccator at ambient conditions, the guest molecules are sorbed by the host at a rate depending on the vapour pressure of the guest. The amount of the sorbed guest molecules was determined gravimetrically by leaving the host complex in the guest vapour to constant weight. The number of guest molecules per molecular formulae of the host complexes, n, and their sorbing duration (the times required to attain constant weight) are given in Table 3 (It should be noted that when these preparations are attempted in solution in ethanol host complexes with a much lower number of guest molecules than those in Table 3 are obtained). The most outstanding fact in Table 3 is that the number of guest benzene and toluene molecules appears to be more than the formal maximum number of 2 found in the Hofmann-type clathrates prepared previously [3]. When these clathrates are left in open air, the number of guest molecules, n, decreases rapidly down to 2 , and then, continues to decrease at a slower rate. This liberation process for benzene in Co-CHA-Ni is illustrated in Figure 2, which plots the decrease of n against time. (Similar observations have been made for benzene in $\mathrm{Cd}-\mathrm{CHA}-\mathrm{Ni}$ and toluene in Co-CHA-Ni hosts.) The discontinuity at $n=2$ on the plot suggests that the host framework with flexible ligand molecules for $n>2$ differs from ≤ 2. These structural changes are also indicated by the infrared spectra of the compounds

Table 5. The infrared wavenumbers of toluene in the $\mathrm{M}-\mathrm{CHA}-\mathrm{Ni}-2 \mathrm{To}(\mathrm{M}=\mathrm{Co}$ or Cd$)$ clathrates and related compounds

Assignment ${ }^{\text {a }}$	Toluene (Liquid) $^{\mathrm{a}}$	Co-daon-Ni.to ${ }^{\text {b }}$	Co-daon-Ni.to ${ }^{\text {b }}$	Co-CHA-Ni-2.to	Cd-CHA-Ni-2.to
$\nu(\mathrm{CH}), \mathrm{A}_{1}$	3085	3080 vw	3083 vw	3087 w	3087 w
$v(\mathrm{CH}), \mathrm{A}_{1}$	3070	-	-	no	no
$v(\mathrm{CH}), \mathrm{A}_{1}$	3058	3061 vw	-	3056 w	3058 w
$v(\mathrm{CH}), \mathrm{B}_{2}$	3037	3030 w	3030 w	3032 vw, sh	3032 vw, sh
$v(\mathrm{CH}), \mathrm{B}_{2}$	3028	-	-	3023 w	3023 w
$\nu\left(\mathrm{CH}_{3}\right), \mathrm{B}_{1}$	2979	2987 m	2980 m	2975 w, sh	2972 w, sh
$\nu\left(\mathrm{CH}_{3}\right), \mathrm{B}_{2}$	2950	2964 vw	2954 vw	obsc.	obsc.
$\nu\left(\mathrm{CH}_{3}\right), \mathrm{A}_{1}$	2920	-	-	obsc.	obsc.
$\nu(\mathrm{CC}), \mathrm{A}_{1}$	1604	1602 vw	1600	1604 w	1604 w
$\nu(\mathrm{CC}), \mathrm{B}_{2}$	1584	1581 s, sh	1581 m , sh	obsc.	obsc.
$\nu(\mathrm{CC}), \mathrm{A}_{1}$	1493	-	-	1496 m	1497 m
$\delta\left(\mathrm{CH}_{3}\right), \mathrm{B}_{2}$	1455	1477 m	1477 m	obsc.	obsc.
$\delta\left(\mathrm{CH}_{3}\right), \mathrm{A}_{1}$	1378	-	-	obsc.	obsc.
$\nu(\mathrm{CC}), \mathrm{B}_{2}$	1331	-	-	no	no
$\beta(\mathrm{CH}), \mathrm{B}_{2}$	1313	1309 vw	1310 vw	no	no
$v\left(\mathrm{C}-\mathrm{CH}_{3}\right) \mathrm{X}$-sens, A_{1}	1208	-	-	obsc.	obsc.
$\beta(\mathrm{CH}), \mathrm{A}_{1}$	1176	1173 vw	1300 w	1180 w	1179 w
$\beta(\mathrm{CH}), \mathrm{B}_{2}$	1153	1155 w	1155 w	1159 w	1157 w
$\beta(\mathrm{CH}), \mathrm{B}_{2}$	1080	1081 w	1082 w, sh	1080 w	1082 w
$\gamma\left(\mathrm{CH}_{3}\right) \mathrm{B}_{1}$	1040	1043 vw	1041 vw	1043 m	1040 m
$\beta(\mathrm{CH}), \mathrm{A}_{1}$	1028	1022 w	1021 w	obsc.	obsc.
Ring, A_{1}	1002	-	-	no	no
$\gamma(\mathrm{CH}), \mathrm{B}_{1}$	983	-	-	no	no
$\gamma(\mathrm{CH}), \mathrm{B}_{1}$	893	-	-	obsc.	obsc.
$\alpha(\mathrm{CCC}) \mathrm{X}$-sens, A_{1}	784	795 w	796 w	obsc.	obsc.
$\gamma(\mathrm{CH}), \mathrm{B}_{1}$	734	749 s	750 s	734 vs, 728 vs	734 vs, 727 vs
$\phi(\mathrm{CC}), \mathrm{B}_{2}$	690	701 m	701 m	699 s, 694 s	$697 \mathrm{~s}, 694 \mathrm{~s}$
	-	687 m ?	688 m ?	no	no
$\alpha(\mathrm{CCC}), \mathrm{B}_{2}$	620	-	-	no	no
$\beta(\mathrm{CCC}) \mathrm{X}$-sens, A_{1}	524	530 vw	523 vw	no	obsc.
$\phi(\mathrm{CCC}) \mathrm{X}$-sens, B_{1}	467	470 vw	-	obsc.	obsc.

${ }^{\mathrm{a}}$ Taken from Ref. [18].
${ }^{\mathrm{b}}$ Taken from Ref. [19].
Abbrs.: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{no}=$ not observed, obsc. $=$ obscured by ligand.
of varying number of guest molecules. These and other notable spectral features arising from the host and the guest moieties are as follows.

As the number of guest benzene molecules gradually increases in the Co-CHA-Ni host, the band of $\mathrm{Ni}(\mathrm{CN})_{4}$ at $2153 \mathrm{~cm}^{-1}$ (Table 1) decreases in intensity and a corresponding new band at $2163 \mathrm{~cm}^{-1}$ grows in intensity. For n $=2$, the former band ($2153 \mathrm{~cm}^{-1}$) disappears and the latter appears as a single band $\left(2163 \mathrm{~cm}^{-1}\right)$. When n exceeds 2, another new band appears at $2151 \mathrm{~cm}^{-1}$ as a twin to the band at $2163 \mathrm{~cm}^{-1}$. It is interesting to note that these twin bands of almost similar intensity are independent of the guest number for $n>2$. These spectral features may be due to some deviation from the square planar symmetry of the $\mathrm{Ni}(\mathrm{CN})_{4}$ unit $\left(\mathrm{D}_{4 \mathrm{~h}}\right)$ resulting in splitting of the ν_{8} vibration of the degenerate E_{u} representation. However, this view is discounted by the evidence that the band frequencies of the twin bands ($2163 / 2151 \mathrm{~cm}^{-1}$) are unchanged with respect
to the n values of 2 to 6.3 i.e., the degree of the deviation from the planar structure and, in turn, the value of the frequency splitting of the ν_{8} band (E_{u}) should vary with the n values. In addition to this, the possibility that a Raman active mode is being observed is also discounted, since the Raman active modes ($\nu_{1}, \mathrm{~A}_{1 \mathrm{~g}}$ and $\nu_{4}, \mathrm{~B}_{1 \mathrm{~g}}$) must be observed at higher frequencies than the infrared active mode $\nu_{8}, \mathrm{E}_{\mathrm{u}}$ [$6,10,11]$. Another conceivable suggestion may be that the primary ligand $\mathrm{Ni}(\mathrm{CN})_{4}$ behaves as a bidentate ligand (as NC-Ni $(\mathrm{CN})_{2}-\mathrm{CN}$) in the host framework. Such a NC-$\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}$ unit has also been found in some clathrates of chemical formula given for Hofmann-type clathrates [16]. It should be noted that these suggestions are tentative and possibly speculative but they are consistent with the present spectral data. Similar twin bands in $\mathrm{Cd}(\mathrm{CHA})_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ for n values of 0.5 to 3.3 have been observed. Similar observations have been made for the other guest molecules (Table 1).

Table 6. The infrared wavenumbers of o-xylene in the clathrates

Assigment ${ }^{\text {a }}$	$o \text {-xylene }{ }^{\mathrm{a}}$ (Liquid)	$\begin{aligned} & \mathrm{Co} \text {-CHA-Ni- } 1.5 \mathrm{G} \\ & \mathrm{G}=o \text {-xylene } \end{aligned}$	$\begin{aligned} & \text { Cd-CHA-Ni-2G } \\ & \mathrm{G}=o \text {-xylene } \end{aligned}$
1, $v(\mathrm{CH}), \mathrm{A}_{1}$	3080	no	no
21, $\nu(\mathrm{CH}), \mathrm{B}_{2}$	3080	no	no
$2, v(\mathrm{CH}), \mathrm{A}_{1}$	3064	3064 w	3067 w
$22, v(\mathrm{CH}), \mathrm{B}_{2}$	3048	3045 w	3047 w
$3, v(\mathrm{CC}), \mathrm{A}_{1}$	1608	1606 w	1605 w
23, $\nu(\mathrm{CC}), \mathrm{B}_{2}$ no	no	no	
4, $\nu(\mathrm{CC}), \mathrm{A}_{1}$	1494	1490 w	1491 w
24, $\nu(\mathrm{CC}), \mathrm{B}_{2}$	1468	1466 m	1467 m
5, Kekule, A_{1}	1292	1285 w	1285 w
25, $\beta(\mathrm{CH}), \mathrm{B}_{2}$	1290	1291 w	1290 w
6, X-sence., A_{1}	1222	no	no
26, X-sens. B_{2}	1185	1188 vw	1186 vw
7, $\beta(\mathrm{CH}), \mathrm{A}_{1}$	1155	obsc.	obsc.
27, $\beta(\mathrm{CH}), \mathrm{B}_{2}$	1121	1119 m	1117 m
$8, \beta(\mathrm{CH}), \mathrm{A}_{1}$	1052	1052 m, sh	1052 w, sh
17, $\gamma(\mathrm{CH}), \mathrm{B}_{1}$	930	no	no
12, $\gamma(\mathrm{CH}), \mathrm{A}_{2}$	(970)	no	no
13, $\gamma(\mathrm{CH}), \mathrm{A}_{2}$	860	no	no
28, X-sens., B_{2}	826	no	no
18, $\gamma(\mathrm{CH}), \mathrm{B}_{1}$	741	743 vs, 755 vs	741 vs, 752 vs
9, X-sens., A_{1}	733	no	no
$14, \phi(\mathrm{CC}), \mathrm{A}_{2}$	[702]	no	no
10, X-sens., A_{1}	(581)	no	no
15, ϕ (CC), A_{2}	505	no	no
29, X-sens., B_{2}	505	no	506
19, ϕ (CC), B_{1}	435	435 m , sh	436 m , sh
30, X-sens., B_{2}	406	nm	
nm 20, X-sens., B_{1}	325	nm	nm
11, X-sens., A_{1}	255	nm	nm
16, X-sens. A 2	180	nm	nm
$\nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$,	2968, 2950	2971 w, 2947 w	2961 w
$\nu_{\mathrm{S}}\left(\mathrm{CH}_{3}\right)$,	2933	2933 w	2934 w
$2 \nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$,	2882	no	no
$2 \delta_{\mathrm{s}}\left(\mathrm{CH}_{3}\right)$,	2732	2733 w	2732 w
$2 \delta_{\text {as }}\left(\mathrm{CH}_{3}\right)$,	1454, 1445, 1384	no	no
$\delta_{\mathrm{S}}\left(\mathrm{CH}_{3}\right)$,	1374	1386 m	1387
CH_{3} rock	1020, 984, 940	obsc.	obsc.

${ }^{\text {a }}$ Taken from Ref. [20], () = infrared frequency, [] = Raman.
Abbrs.: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{no}=$ not observed, obsc. $=$ obscured by ligand.

Regarding the other guests, apart from benzene and toluene, the maximum value for n is 2 (Table 3).

As for the spectral changes in the guest molecules, the most outstanding features are as follows: the CH out-ofplane vibrational bands are found to be shifted to higher frequencies from that of the free molecule (Tables 411). Similar positive frequency shifts were observed for Hofmann-type clathrates and explained as being due to the presence of a weak hydrogen bond between π electrons located above and below the plane of the benzene ring and the ammonia molecules of the host lattice [6, 7]. Similar shifts have also been found for other members of Hofmann-type
clathrates [$9,10,14]$. Therefore, we may reasonably suggest that the frequency shifts in our compounds are due to the π electron donation from the guests to the hydrogen atoms of the NH_{2} group of the ligand molecule which has a more electrophilic character caused by the coordination. The values of these shifts are decreasing in the increasing order of the guest size.

Another notable feature of the CH out-of-plane vibration in benzene is that it appears as a triplet for $\quad \mathrm{M}(\mathrm{en}) \mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6} \quad\left(\mathrm{M}=\mathrm{Mn} \quad\right.$ or $\quad \mathrm{Cd}, \quad \mathrm{M}^{\prime}=\mathrm{Cd}$ or Hg) [27], a doublet for our compounds and for $\mathrm{Cd}($ pyrazine $) \mathrm{M}(\mathrm{CN})_{4} \cdot \mathrm{C}_{6} \mathrm{H}_{6} \quad(\mathrm{M}=\mathrm{Cd}$ or Hg$) \quad$ [28],

Table 7. The infrared wavenumbers of m-xylene in M-CHA-Ni-2m-xylene clathrates

Assignment ${ }^{\text {a }}$	$m \text {-Xylene }{ }^{\mathrm{a}}$ (Liquid)	$\begin{aligned} & \text { Co-dabn-Ni-G }{ }^{\text {b }} \\ & \mathrm{G}=m \text {-Xylene } \end{aligned}$	$\begin{aligned} & \mathrm{Cd}-\mathrm{dabn}-\mathrm{Ni}-2 \mathrm{G}^{\mathrm{b}} \\ & \mathrm{G}=m \text {-Xylene } \end{aligned}$	$\begin{aligned} & \text { Cd-CHA-Ni-2G } \\ & \mathrm{G}=m \text {-Xylene } \end{aligned}$
$v(\mathrm{CH}), \mathrm{B}_{2}$	3052	-	-	-
$v(\mathrm{CH}), \mathrm{A}_{1}$	3032	3024 vw	3029 m	3030 w
$\nu(\mathrm{CC}), \mathrm{B}_{2}$	1613	1623 w	1615 m	1615 w
$v(C C), A_{1}$	1595	1606 w	1608 w, sh	1592 w, sh
$\nu(\mathrm{CC}), \mathrm{B}_{2}$	1492	1487 w	1487 w	1489 w
$\nu(\mathrm{CC}), \mathrm{A}_{1}$	1460	1459 w	obsc.	obsc.
$\beta(\mathrm{CH}), \mathrm{B}_{2}$	1303	1308 vw	1378 m	1376 m
$\alpha(\mathrm{CCC}), \mathrm{B}_{2}$	1264	1287 vw	obsc.	obsc.
X-sens., A_{1}	1252	-	obsc.	obsc.
$\beta(\mathrm{CH}), \mathrm{B}_{2}$	1167	1160 vw	obsc.	obsc.
X-sens., B_{2}	1154	1137	no	1158 vw
$\beta(\mathrm{CH}), \mathrm{A}_{1}$	1094	1093 vw	1097 w	1093 m
$\gamma(\mathrm{CH}), \mathrm{B}_{1}$	968	-	no	no
X-sens., B_{2}	905	906 vw	906 vw	906 vw
$\gamma(\mathrm{CH}), \mathrm{B}_{1}$	876	-	obsc.	obsc.
$\gamma(\mathrm{CH}), \mathrm{B}_{1}$	768	769 w	769 vs	767 vs
X-sens., A_{1}	7224	-	obsc.	obsc.
π (CC), B_{1}	690	696 w	691 s	691 s
X-sens., A_{1}	537	-	no	no
X-sens., B_{2}	515	517 w	obsc.	obsc.
π (CC), B_{1}	433	-	obsc.	obsc.
X-sens., B_{2}	404	-	obsc.	obsc.

${ }^{\text {a }}$ Taken from Ref. [21].
${ }^{\mathrm{b}}$ Taken from Ref. [22].
Abbrs.: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{no}=$ not observed, obsc. $=$ obscured by ligand.

Table 8. The infrared wavenumbers of p-xylene in the clathrates

Assignment ${ }^{\text {a }}$	p-Xylene ${ }^{\text {a }}$ (Liquid)	$\begin{aligned} & \text { Co-daoc- } \mathrm{Ni}^{\mathrm{b}} \\ & p \text {-Xylene } \end{aligned}$	Co-CHA-Ni-1.5G $\mathrm{G}=p$-Xylene	Cd-CHA-Ni-G $\mathrm{G}=p$-Xylene
$v(\mathrm{CH}), \mathrm{B}_{1 \mathrm{u}}$	3044	-	3051 w	3049 w
$\nu(\mathrm{CH}), \mathrm{B}_{2 \mathrm{u}}$	3017	3018 vw	3020 w	3020 w
$v\left(\mathrm{CH}_{3}\right), \mathrm{B}_{2 \mathrm{u}}$	2975, 2947	2985 w	obsc.	obsc.
$v\left(\mathrm{CH}_{3}\right), \mathrm{B}_{3 \mathrm{u}}$	2923	-	obsc.	obsc.
$\nu(\mathrm{CC}), \mathrm{B}_{1 \mathrm{u}}$	1529	1516 w	1517 s	1516 s
$\delta\left(\mathrm{CH}_{3}\right), \mathrm{B}_{3 \mathrm{u}}$	1458, 1452	1475, sh	obsc.	obsc.
$v(\mathrm{CC}), \mathrm{B}_{3 \mathrm{u}}$	1421	1435 vw	no	no
$\delta\left(\mathrm{CH}_{3}\right), \mathrm{B}_{2 \mathrm{u}}$	1379	-	obsc.	obsc.
$\alpha(\mathrm{CCC}), \mathrm{B}_{2 \mathrm{u}}$	1324	-	no	no
X-sens., $\mathrm{B}_{2 \mathrm{u}}$	1220	-	no	no
$\beta(\mathrm{CH}), \mathrm{B}_{2 \mathrm{u}}$	1120	1119 vw	1118 m	1116 w
$\gamma\left(\mathrm{CH}_{3}\right), \mathrm{B}_{2 \mathrm{u}}$	1041	1049 m	1040 w, sh	no
$\beta(\mathrm{CH}), \mathrm{B}_{1 \mathrm{u}}$	1023	1022 vw	obsc.	obsc.
$\gamma(\mathrm{CH}), \mathrm{B}_{3 \mathrm{u}}$	795	796 s	796 vs	795 vs
X -sens., $\mathrm{B}_{1 \mathrm{u}}$	725	729 m	obsc.	obsc.
$\phi(\mathrm{CC}), \mathrm{B}_{3 \mathrm{u}}$	483	484 w	obsc.	obsc.

${ }^{\mathrm{a}}$ Taken from Ref. [23].
${ }^{\mathrm{b}}$ Taken from Ref. [19].
Abbrs.: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{no}=$ not observed, obsc. $=$ obscured by ligand.

Table 9. The infrared wavenumbers of 1,2-dichlorobenzene in the M-CHA-Ni-2 1,2 dichlorobenzene clathrates and related compounds

Assignment ${ }^{\text {a }}$	$\begin{aligned} & \text { 1,2-dichlorobenzene } \\ & \text { in } \mathrm{CCl}_{4} \text { or } \mathrm{CS}_{2} \end{aligned}$	$\begin{aligned} & \text { Co-daon-Ni-2G } \\ & \text { G }=1,2 \text {-dichlorobenzene } \end{aligned}$	$\begin{aligned} & \mathrm{Cd} \text {-daon-Ni- } 2 \mathrm{G}^{\mathrm{b}} \\ & \mathrm{G}=1,2 \text {-dichlorobenzene } \end{aligned}$	Cd-CHA-Ni-2G $\mathrm{G}=1,2$-dichlorobenzene
$1, \nu(\mathrm{CH}) \mathrm{A}_{1}$	3072	3078 vw	3082 w	3072 w
21, $v(\mathrm{CH}) \mathrm{B}_{2}$	3072			
$2, \nu(\mathrm{CH}) \mathrm{A}_{1}$	no			
22, $\nu(\mathrm{CH}) \mathrm{B}_{2}$	no			
$3, \nu(\mathrm{CC}) \mathrm{A}_{1}$	1576	1571 m	1570 m	obsc.
$23, v(\mathrm{CH}) \mathrm{B}_{2}$	1576			
$4, \nu(\mathrm{CH}) \mathrm{A}_{1}$	1458	1455 s	1454 s 143 m , sh	
$24, \nu(\mathrm{CH}) \mathrm{B}_{2}$	1438	1434 m	1434 m	1436 m
5, Kekule A_{1}	1276			
$25, v(\mathrm{CH}) \mathrm{B}_{2}$	1252	1249 w	1259 w	no
6, X-sens., A_{1}	1155	1157 m	1157 vw	obsc.
26, X-sens., B_{2}	1130	1122 m	1123 m	1125 s
7, $\beta(\mathrm{CH}) \mathrm{A}_{1}$	1130			1125 s
27, $\beta(\mathrm{CH}) \mathrm{B}_{2}$	1038	1037 s	1035 s	1036 vs
$8, \beta(\mathrm{CH}) \mathrm{A}_{1}$	no			
12, $\gamma(\mathrm{CH}) \mathrm{A}_{2}$	975	-	-	obsc.
17, $\gamma(\mathrm{CH}) \mathrm{B}_{1}$	940	947 vw	947	949 w
13, $\gamma(\mathrm{CH}) \mathrm{A}_{2}$	850	859 vw	843 vw	obsc.
18, $\gamma(\mathrm{CH}) \mathrm{B}_{1}$	748	760 vs	760 vs	748 vs
28, X-sens., B_{2}	740	736 vs	736 vs	762 vs
$14, \phi(\mathrm{CC}) \mathrm{A}_{2}$	no			
9, X-sens., A_{1}	660	660 s	659 s	659 s
10, X-sens., A_{1}	480	486 vw	481 vw	obsc.
15, ϕ (CC) A_{2}	no			no
$19, \phi(\mathrm{CC}) \mathrm{B}_{1}$	435	-	-	no
29, X-sens., B_{2}	427	-	-	no
30, X-sens., B_{2}	336			
20, X-sens., B_{1}	239			nm
11, X-sens., A_{1}	202			nm
16, X-sens., A_{2}	152			nm
$\nu_{\mathrm{s}}\left(\mathrm{CH}_{3}\right)$	2977, 2950			
$\nu_{\mathrm{S}}\left(\mathrm{CH}_{3}\right)$	2922			no
	2856			no
$2 \delta_{\text {as }}\left(\mathrm{CH}_{3}\right)$	2742			no
$2 \delta_{\text {s }}\left(\mathrm{CH}_{3}\right)$	1458, 1439			1456 s
$\delta_{\text {as }}\left(\mathrm{CH}_{3}\right)$	1382			1382 w
$\delta_{\text {s }}(\mathrm{CH} 3)$	no			no
$\left(\mathrm{CH}_{3}\right)$ rock	1042, 988			no

${ }^{\mathrm{a}}$ Taken from Ref. [20].
${ }^{\mathrm{b}}$ Taken from Ref. [24].
Abbrs.: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{no}=$ not observed, obsc. $=$ obscured by ligand, $\mathrm{nm}=$ not measured.
$\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{M}=\mathrm{Mn}\right.$ or $\mathrm{Cd}, \mathrm{M}^{\prime}=\mathrm{Cd}$ or Hg$)$ [29] and $\mathrm{M}(\mathrm{tn}) \mathrm{Zn}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{M}=\mathrm{Mn}$ or Zn$)$ [30], a singlet for $\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{M}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$ or $\mathrm{Cd})[6,8]$ and $\mathrm{Cd}\left(4,4^{\prime}\right.$-bipyridyl) $\mathrm{M}^{\prime}(\mathrm{CN})_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{M}^{\prime}=\mathrm{Cd}\right.$ or Hg) [31]. In the case of doublet or triplet features the splittings have been ascribed to crystal field effects (strong host-guest interactions) [6-8, 27-31]. In the case of a single band, because of the larger cavities due to the ligands, the host-guest interactions are expected not to be effective for splitting [31]. Splitting has also been observed for toluene (Table 5) and o-xylene (Table 6). The band positions of
benzene and toluene do not depend on the value of n ($\mathrm{n} \leq 2$ or $\mathrm{n}>2$); the only differences are in the band intensities.

The noteworthy spectral features arising from the ligand molecules on guest inclusion are as follows: on going from the host complex to the clathrate the symmetric and asymmetric stretching frequencies of NH_{2} decrease (Table 2a, b). This downward shift may be due to hydrogen bonding between the π electron of the guest ring(s) and the cyclohexylamine ligand molecules, as has been suggested for the Hofman-type benzene clathrates with amine and diamine ligands [27, 30].

Table 10. The infrared wavenumbers of 1,3-dichlorobenzene in the Cd-CHA-Ni1,3 dichlorobenzene clathrate and related compounds

Assignment ${ }^{\text {a }}$		1,3-dichlorobenzene ${ }^{\text {a }}$ (liquid)	$\begin{aligned} & \text { 1,3-dichlorobenzene }{ }^{\mathrm{b}} \\ & \text { (in } \mathrm{CCl}_{4} \text { or } \mathrm{CS}_{2} \text {) } \end{aligned}$	Cd-CHA-Ni-2G G = 1,3-dichlorobenzene
$\mathrm{A}_{1} \nu_{1} \nu(\mathrm{CH})$,	3071	3071	3069 w	
	$v_{2} v(\mathrm{CH})$			no
	$\nu_{3} \nu(\mathrm{CH})$,			no
	$\nu_{4} \nu(\mathrm{CC})$,	1577	1580	1578 vs
	$\nu_{5} v(\mathrm{CC})$,	1412	1412	1413
	$\nu_{6} \mathrm{X}$-sens.,	1124	1127	1124 m
	$\nu_{7} \nu_{7} v(\mathrm{CH})$,	1073		1072 m
	ν_{8} ring,	997	1000	999 s
	$\nu_{9} \mathrm{X}$-sense.	663	663	663
	$\nu_{10} \mathrm{X}$-sense.	398	399	no
	v_{11} X-sens.,	198	198	no
A_{2}	$\nu_{12} \gamma(\mathrm{CH})$,	892	896	890 m
	$v_{13} v(\mathrm{CC})$	532		529
	$\nu_{14} \mathrm{X}$-sens.,			
B_{1}	$\nu_{15} \gamma(\mathrm{CH})$,	964	966	967 m
	$\nu_{16} \gamma(\mathrm{CH})$	867	869	867 m
	$\nu_{17} \gamma(\mathrm{CH})$	773	775	774 s
	$\nu_{18} \phi(\mathrm{CC})$	672	674	674 s
	$v_{19} v(\mathrm{CC})$	433	428	no
	$v_{20} \text { X-sens., }$	175		nm
$\mathrm{B}_{2} \nu_{21} \nu(\mathrm{CH})$,	3095	3095	3092 w	
	$\nu_{22} \nu(\mathrm{CC})$	1577	1580	1580 vs
	$\nu_{23} \nu(\mathrm{CC}=$,	1462	1464	1462 vs
	$\nu_{24} \beta(\mathrm{CH})$,	1289	1330	1341 w, sh
	ν_{25} Kekule	1258	1258	1255 w
	$\nu_{26} \nu(\mathrm{CH})$,	1161	1161	1162 w
	ν_{27} X-sens.,	1080	1079	1081 m
	$v_{28} \text { X-sens., }$	784	784	783 vs
	$\begin{aligned} & \nu_{29} \text { X-sens., } \\ & \nu_{30} \text { X-sens., } \end{aligned}$	365	364	nm

${ }^{\mathrm{a}}$ Taken from Ref. [21].
${ }^{\mathrm{b}}$ Taken from Ref. [25].
Abbrs.: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{no}=$ not observed, $\mathrm{nm}=$ not measured.

Based on the present data, it is not possible to determine the configuration of the ligand or guest molecules in the clathrate studies. As in the Hofmann-type and Hofmann- $\mathrm{T}_{\mathrm{d}^{-}}$ type benzene clathrates, the relative orientation of the $\mathrm{N}-\mathrm{H}$ bonds of cyclohexylamine with respect to the axis of the π cloud of the guest must be the one most favourable for hydrogen bonding [32].

Selective absorption and separation of guest molecules

The phenomena just described implies the employability of the host complexes for selective absorption and separations of isomeric guest molecules. For these purposes three experiments have been performed: (i) When the host complex Cd-CHA-Ni was placed in a desiccator containing a mixture of benzene and toluene vapour with a mole ratio of $1 / 1$, the benzene clathrate was obtained after a week. Infrared spectra
of this show no sign of a toluene molecule in the compound, only benzene ($n=5.8$). In the case of the Co-CHA-Ni complex, however, both benzene and toluene are sorbed. (ii) When the toluene clathrate Cd-CHA-Ni-to was placed in a desiccator containing benzene and toluene vapour as before, the benzene clathrate was obtained after two weeks ($n=5.9$). (iii) The host complexes absorb both m-xylene and p-xylene, but not o-xylene, from the $o-, m$ - and p-xylene mixture with mole ratios of $1: 1: 1$. These promising results suggest that the host complex compounds presented here may be employed for selective absorption and separation of isomers.

It should be noted that experiments with a large number of aromatic guest molecules and host complexes with $\mathrm{M}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Zn}$ or $\mathrm{Cd}, \mathrm{M}^{\prime}=\mathrm{Ni}, \mathrm{Pd}$ or Pt and a series of cycloalkylamines (cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine, cycloheptylamine, cyc-

Table 11. The infrared wavenumbers of naphthalene in Cd-CHA-Ni-Npth. clathrates

Assignment $^{\mathrm{a}}$	Naphthalene $^{\mathrm{a}}$ (in CCl_{4} or $\left.\mathrm{CS}_{2}\right)$	Cd-daon-Ni-G $\mathrm{G}=$ Naphthalene	Cd-CHA-Ni-2G $\mathrm{G}=$ Naphthalene
41 CH str., $\mathrm{B}_{3 \mathrm{u}}$	3072 vs	3062 w	3065 w
29 CH str., $\mathrm{B}_{2 \mathrm{u}}$	3014 s	3012 vw	$3012 \mathrm{vw}, \mathrm{sh}$
42 CH str., $\mathrm{B}_{3 \mathrm{u}}$	2976 s	2979 m	no
30 CH str., $\mathrm{B}_{2 \mathrm{u}}$	2947 m	2960 vw	no
43 CC str., $\mathrm{B}_{3 \mathrm{u}}$	1680 m	-	no
31 CC str., $\mathrm{B}_{2 \mathrm{u}}$	1595 s	$1593 \mathrm{~s}, \mathrm{sh}$	$1596 \mathrm{~m}, \mathrm{sh}$
44 CC str., $\mathrm{B}_{3 \mathrm{u}}$	1510 m	1504 m	1507 m
32 CC str., $\mathrm{B}_{2 \mathrm{u}}$	1387 vs	1387 w	1390 m
33 CH bend, $\mathrm{B}_{2 \mathrm{u}}$	1268 vs	1269 m	1269 s
45 CH bend, $\mathrm{B}_{3 \mathrm{u}}$	1211 s	-	1213 m
34 CH bend, $\mathrm{B}_{2 \mathrm{u}}$	1139 s	1130 w	1130 m
46 CH bend, $\mathrm{B}_{3 \mathrm{u}}$	1012 s	1011 w	$1010 \mathrm{~m}, \mathrm{sh}$
22 CH bend, $\mathrm{B}_{1 \mathrm{u}}$	957 s	-	no
47 skeletal breat, $\mathrm{B}_{3 \mathrm{u}}$	876 m	-	880
23 CH bend, $\mathrm{B}_{1 \mathrm{u}}$	782 vs	796 vs	786 vvs
35 skeletat distor., $\mathrm{B}_{2 \mathrm{u}}$	752 s	754 vw	754 vw
48 skeletat distor., $\mathrm{B}_{3 \mathrm{u}}$	618 s	619 w	618 m
24 CC distor., $\mathrm{B}_{1 \mathrm{u}}$	475 s	480 s	480 m

${ }^{\mathrm{a}}$ Taken from Ref. [26].
Abbrs.: $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, $\mathrm{no}=$ not observed.
looctylamine, cyclododecylamine, cyclohexyldiamine, cycloheptyl cyanide, cycloheptanecarbonitrile, cyclohexanecarbonitrile, cyclohexyl isocyanide, cyclohexyl isothiocyanate and cyclohexyl mercaptan) are in progress.

References

1. R.F. Evans, O. Ormrod, B.B. Goalby, and L.A.K. Stavely: J. Chem. Soc. 3346 (1950).
2. U.S. Patent, 2, 732, 413 (1956).
3. T. Iwamoto: The Hofmann-type and Related Inclusion compounds (Inclusion compounds, Vol. 4, J.L. Atwood, J.E.D. Davies and D.D. MacNicol (eds.), pp. 29-57, Academic Press (1984).
4. S. Nishikiori and T. Iwamoto: Chem. Lett. 1035 (1982).
5. Y. Mathey and C. Mazieres: Can. J. Chem. 52, 3637 (1974).
6. S. Akyüz, A.B. Dempster, R.L. Morehouse, and S. Susuki: J. Mol. Struct. 17, 105 (1973).
7. S. Akyüz, A.B. Dempster, and R.L. Morehouse: Spectrochim. Acta 30A, 1183 (1974).
8. S. Akyüz, A.B. Dempster, and R.L. Morehouse: Spectrochim. Acta 30A, 1189 (1974).
9. S. Bayarı, Z. Kantarcı, and S. Akyüz: J. Mol. Struct. 351, 19 (1995)
10. N. Karacan, Z. Kantarcı, and S. Akyüz: Spectrochim. Acta A52, 771 (1996).
11. R.L. McCullough, L.H. Jones, and G.A. Croaby, Spectrochim. Acta 16, 929 (1960).
12. A.O. Diallo, N.V. Thanh, and I. Rossi, Spectrochim. Acta 43A, 415 (1987).
13. S. Akyüz and J.E.D. Davies: J. Mol. Struct. 97, 457 (1982).
14. S. Bayar, C. Bayrak, and Z. Kantarci: J. Incl. Phenom. 38, 23 (2000).
15. D.A. Thornton: J. Coord. Chem. 24, 261 (1991).
16. T. Iwamoto, J. Incl. Phenom. 24, 61 (1996).
17. P.C. Painter and J.L. Koenig: Spectrochim. Acta. 33A, 1003 (1977).
18. A.P. Hitchcock and J.D. Laposa: J.Mol.Spectrosc. 54, 223 (1975).
19. E. Kasap and A. Özbay: J. Incl. Phenom. 28, 335 (1997).
20. J.H.S. Green: Spectrochim.Acta. 26A, 1913 (1970).
21. J.H.S. Green: Spectrochim. Acta. 26A, 1523 (1970).
22. S. Saǧlam, T.R. Sertbakan, E. Kasap, and Z. Kantarcı: J. Mol. Struct. 482-483, 69 (1999).
23. J.H.S. Green: Spectrochim. Acta. 26A, 1503 (1970).
24. T.R. Sertbakan, E. Kasap, and Z. Kantarcı: J. Mol. Struct. 482-483, 75 (1999).
25. J.R. Schever and J.C. Evans: Spectrochim. Acta 19, 1739 (1963).
26. E.R. Lippincott and E.J. O'Reilly: J. Chem. Phys. 23, 238 (1955).
27. E. Kasap and Z. Kantarcı: J. Incl. Phenom. 23, 1 (1995).
28. N. Ekici, Z. Kantarcı, and S. Akyüz: J. Incl. Phenom. 10, 9 (1991).
29. E. Kasap and Z. Kantarci: J. Incl. Phenom. 20, 33 (1995).
30. Z. Kantarcı and C. Bayrak: J. Incl. Phenom. 30, 59 (1998).
31. S. Bayarı, Z. Kantarcı, and S. Akyüz: J. Incl. Phenom. 17, 291 (1998).
32. E. Ruiz, J.J. Novoa, and S. Alvarez, J. Phys. Chem. 99, 2296 (1995).

[^0]: * Author for correspondence.

[^1]: * $p(\mathrm{C} 13 \mathrm{~F} \mathrm{Et})($ poly(chloro-trifluoro ethylene), $\mathrm{v}=$ very, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{w}=$ weak, no $=$ not observed

